OTU1 [GST-tagged] Deconjugating enzyme: Deubiquitylase

Alternate Names: OTU domain-containing protein 2 (OTUD2), YOD1, DUBA-8, HIV-1-induced protease 7 (HIN7)

Cat. No.	64-0036-050
Lot. No.	30109

Quantity: 50 µg Storage: -70°C

FOR RESEARCH USE ONLY

NOT FOR USE IN HUMANS

CERTIFICATE OF ANALYSIS Page 1 of 2

Protein Sequence: Please see page 2

Background

Deconjugating enzymes (DCEs) are proteases that process ubiquitin or ubiquitin-like gene products, reverse the modification of proteins by a single ubiquitin or ubiquitin-like protein (UBL) and remodel polyubiquitin (or poly-UBL) chains on target proteins (Reyes-Turcu et al., 2009). The deubiquitylating - or deubiquitinating - enzymes (DUBs) represent the largest family of DCEs and regulate ubiquitin dependent signalling pathways. The activities of the DUBs include the generation of free ubiquitin from precursor molecules, the recycling of ubiguitin following substrate degradation to maintain cellular ubiquitin homeostasis and the removal of ubiquitin or ubiquitin-like proteins (UBL) modifications through chain editing to rescue proteins from proteasomal degradation or to influence cell signalling events (Komander et al., 2009). There are two main classes of DUB, cysteine metalloproteases. proteases and OTU1 is a cysteine protease and is a member of the OTU (ovarian tumour) superfamily of proteins (Balakirev et al., 2003). Cloning of the human gene was first described by Balakirev et al. (2003). OTU enzymes play important roles as negative-feedback regulators in NF-kB signalling, interferon signalling and in p97 (cdc48)-mediated processes although the cellular functions of most OTU enzymes remain to be discovered. Ovarian tumour family DUBs contain a papain-like catalytic core of ~180 amino acids. In addition to their catalytic domain, many OTU members have additional ubiquitin-binding domains (UBDs). Continued on page 2

Physical Characteristics

Species: human

Source: E. coli

Quantity: 50 µg

Concentration: 0.5 mg/ml

Formulation: 50 mM HEPES pH 7.5, 150 mM sodium chloride, 2 mM dithiothreitol, 10% glycerol

Molecular Weight: ~65 kDa

Purity: >98% by InstantBlue™ SDS-PAGE

Stability/Storage: 12 months at -70°C; aliquot as required

Quality Assurance

Purity:

4-12% gradient SDS-PAGE InstantBlue™ staining Lane 1: MW markers Lane 2: 1 μg GST-OTU1

Protein Identification:

Confirmed by mass spectrometry.

Deubiquitylase Enzyme Assay:

The activity of GST-OTU1 was validated by determining the increase in fluorescence measured as a result of the enzyme catalysed cleavage of the fluorogenic substrate Ubiquitin-Rhodamine 110-Glycine generating Ubiquitin and Rhodamine 110-Glycine. Incubation of the substrate in the presence or absence of GST-OTU1 was compared confirming the deubiquitylating activity of GST-OTU1.

ORDERS / SALES SUPPORT International: +1-617-245-0003 US Toll-Free: 1-888-4E1E2E3 (1-888-431-3233) Email: sales.support@ubiquigent.com UK HQ and TECHNICAL SUPPORT

 International:
 +44 (0) 1382 381147
 (9AM-5PM UTC)

 US/Canada:
 +1-617-245-0020
 (9AM-5PM UTC)

 Email:
 tech.support@ubiquigent.com

Email services@ubiquigent.com for enquiries regarding compound profiling and/or custom assay development services. © Ubiquigent 2012. Unless otherwise noted, Ubiquigent, Ubiquigent logo and all other trademarks are the property of Ubiquigent, Ltd.

Lot-specific COA version tracker: v1.0.0

Limited Terms of Use: For research use only. Not for use in humans or for diagnostics. Not for distribution or resale in any form, modification or derivative OR for use in providing services to a third party (e.g. screening or profiling) without the written permission of Ubiquigent, Ltd.

OTU1 [GST-tagged] Deconjugating enzyme: Deubiquitylase

Alternate Names: OTU domain-containing protein 2 (OTUD2), YOD1, DUBA-8, HIV-1-induced protease 7 (HIN7)

Cat. No.	64-0036-050
Lot. No.	30109

Quantity: 50 µg Storage: -70°C

FOR RESEARCH USE ONLY

NOT FOR USE IN HUMANS

Continued from page 1

CERTIFICATE OF ANALYSIS Page 2 of 2

Background

Physical Characteristics

Continued from page 1

At least 20 different UBD families have been described, and knowledge of linkage-specific UBDs have provided the means to understand the roles of different ubiquitin linkages in cells (Licchesi et al., 2012). OTU1 is a constituent of a multi-protein complex with p97 as its nucleus, suggesting a functional link to a pathway responsible for the dislocation of misfolded proteins from the endoplasmic reticulum (Ernst et al., 2009). p97 is an AAA ATPase that plays a central role in the ERAD pathway by chaperoning proteins to the proteasome for destruction (Messick et al., 2008). In the literature, it has been shown that OTU1 binds polyubiquitin chains more tightly than monoubiquitin and preferentially hydrolyzes longer polyubiquitin chains with Lys48 linkages, having little or no activity on Lys63- and Lys29-linked chains (Messick et al., 2008).

References:

Balakirev MY, Tcherniuk SO, Jaquinod M and Chroboczek J (2003) Otubains: a new family of cysteine proteases in the ubiquitin pathway. *EMBO Rep* **4**, 517-522.

Ernst R, Mueller B, Ploegh HL and Schlieker C (2009) The otubain YOD1 is a deubiquitinating enzyme that associates with p97 to facilitate protein dislocation from the ER. *Molecular Cell* **36**, 28-38.

Komander D, Clague MJ and Urbe S (2009) Breaking the chains: structure and function of the deubiquitinases. *Nat Rev Mol Cell Biol* **10**, 550-563.

Licchesi JD, Mieszczanek J, Mevissen TE, Rutherford TJ, Akutsu M, Virdee S, et al. (2012) An ankyrin-repeat ubiquitin-binding domain determines TRABID's specificity for atypical ubiquitin chains. *Nature Structural & Molecular Biology* **19**, 62-71.

Messick TE, Russell NS, Iwata AJ, Sarachan KL, Shiekhattar R, Shanks JR, et al. (2008) Structural basis for ubiquitin recognition by the Otu1 ovarian tumor domain protein. *J Biol Chem* **283**, 11038-11049.

Reyes-Turcu FE, Ventii KH and Wilkinson KD (2009) Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. *Ann Rev Biochem* **78**, 363-397. **Protein Sequence: MSPILGYWKIKGLVQPTRLLLEYLEEKYEEH** LYERDEGDKWRNKKFELGLEFPNLPYY **IDGDVKLTQSMAIIRYIADKHNMLGGCPKER** AEISMLEGAVLDIRYGVSRIAYSKDFETLKVD FLSKLPEMLKMFEDRLCHKTYLNGDHVTHP DFMLYDALDVVLYMDPMCLDAFPKLVCFK **KRIEAIPQIDKYLKSSKYIAWPLQGWQAT** FGGGDHPPKSDLEVLFOGPLGSMFGPAK GRHFGVHPAPGFPGGVSOOAAGTKAG PAGAWPVGSRTDTMWRLRCKAKDGTHV LQGLSSRTRVRELQGQIAAITGIAPGGQRIL VGYPPECLDLSNGDTILEDLPIQSGDMLI IEEDQTRPRSSPAFTKRGASSYVRETLPVL TRTVVPADNSCLFTSVYYVVEGGVLNPACA PEMRRLIAQIVASDPDFYSEAILGKTNQEYCD WIKRDDTWGGAIEISILSKFYOCEICVVDTOT VRIDRFGEDAGYTKRVLLIYDGIHYDPLQRN FPDPDTPPLTIFSSNDDIVLVQALELADEAR RRRQFTDVNRFTLRCMVCQKGLTGQAEAREHA **KETGHTNFGEV**

Tag (**bold text**): N-terminal GST Protease cleavage site: PreScission[™] (<u>LEVLFQ▼GP</u>) OTU1 (regular text): Start *bold italics* (amino acid residues 1-348) Accession number: NP_061036

ORDERS / SALES SUPPORT International: +1-617-245-0003

 International:
 +1-617-245-0003

 US Toll-Free:
 1-888-4E1E2E3 (1-888-431-3233)

 Email:
 sales.support@ubiquigent.com

UK HQ and TECHNICAL SUPPORT

International: +44 (0) 1382 381147 (9AM-5PM UTC) US/Canada: +1-617-245-0020 (9AM-5PM UTC) Email: tech.support@ubiquigent.com

Email services@ubiquigent.com for enquiries regarding compound profiling and/or custom assay development services. © Ubiquigent 2012. Unless otherwise noted, Ubiquigent, Ubiquigent logo and all other trademarks are the property of Ubiquigent, Ltd.

Limited Terms of Use: For research use only. Not for use in humans or for diagnostics. Not for distribution or resale in any form, modification or derivative OR for use in providing services to a third party (e.g. screening or profiling) without the written permission of Ubiquigent, Ltd.

Lot-specific COA version tracker: v1.0.0